National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Shrinkage for Gaussian and t copulas in ultra-high dimensions
Anatolyev, Stanislav ; Pyrlik, Vladimir
Copulas are a convenient framework to synthesize joint distributions, particularly in higher dimensions. Currently, copula-based high dimensional settings are used for as many as a few hundred variables and require large data samples for estimation to be precise. In this paper, we employ shrinkage techniques for large covariance matrices in the problem of estimation of Gaussian and t copulas whose dimensionality goes well beyond that typical in the literature. Specifically, we use the covariance matrix shrinkage of Ledoit and Wolf to estimate large matrix parameters of Gaussian and t copulas for up to thousands of variables, using up to 20 times lower sample sizes. The simulation study shows that the shrinkage estimation significantly outperforms traditional estimators, both in low and especially high dimensions. We also apply this approach to the problem of allocation of large portfolios.
Fast Dependency-Aware Feature Selection in Very-High-Dimensional Pattern Recognition Problems
Somol, Petr ; Grim, Jiří
The paper addresses the problem of making dependency-aware feature selection feasible in pattern recognition problems of very high dimensionality. The idea of individually best ranking is generalized to evaluate the contextual quality of each feature in a series of randomly generated feature subsets. Each random subset is evaluated by a criterion function of arbitrary choice (permitting functions of high complexity). Eventually, the novel dependency-aware feature rank is computed, expressing the average benefit of including a feature into feature subsets. The method is efficient and generalizes well especially in very-high-dimensional problems, where traditional context-aware feature selection methods fail due to prohibitive computational complexity or to over-fitting. The method is shown well capable of over-performing the commonly applied individual ranking which ignores important contextual information contained in data.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.